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Abstract. A comparison is made between Davidson’s method for the real, symmetric matrix 
eigenproblem and a version of the Lanczos method obtained by removing the perturbation 
theory ‘corrections’ from Davidson’s algorithm. It is found that the convergence of 
Davidson’s method is superior to that of Lanczos only if the matrix is quite strongly 
diagonally dominant. Applications to typical matrices from nuclear structure calculations, 
which are not very diagonally dominant, show no essential difference between the con- 
vergence rates. 

The Davidson-Lanczos method as used here is capable, unlike the usual versions of the 
Lanczos method, of direct application to the generalised eigenproblem Ax = ABx. We show 
how this can be implemented and give some examples that illustrate the convergence 
properties. 

1. Introduction 

Shell model calculations in nuclear physics require the computation of a small number 
of eigenvalues and eigenvectors, usually the extreme ones, of a real symmetric 
Hamiltonian matrix of high order which is only moderately sparse. 

For matrices of reasonable size the problem has been completely treated in the 
literature (Wilkinson 1965), but for matrices of high order computational difficulties 
with respect to storage and rounding errors introduced in the course of computation 
make transformation methods unfeasible. The Lanczos method (Lanczos 1950, Paige 
1972) has been found to be very efficient for the diagonalisation of such matrices and 
has been shown (Whitehead et a1 1977) to be a very powerful tool in nuclear 
spectroscopy. 

Recently, Davidson (Davidson 1975) introduced a new method and compared it to 
that of Lanczos. The method has been used with considerable success in molecular 
physics, but it is not clear that it is preferable to that of Lanczos in all cases. In 
particular, there are significant numerical differences between the matrices that occur in 
molecular and nuclear problems. 

The principal aim of the present work was to investigate the claims of its originator 
that Davidson’s method is a marked improvement over that of Lanczos. In principle 
Davidson’s method differs from Lanczos only by the use of a device based on first-order 
perturbation theory (equation 2.2), the purpose of which is to accelerate convergence. 
The technical details of the two methods as usually presented are, however, quite 
different. The resulting algorithm, which we refer to as DL, is mathematically identical 
and numerically very similar to the standard Lanczos method. In this paper we compare 
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the performance of the Davidson and DL algorithms; by switching off the Davidson 
perturbation correction in this way, we obtain a clear comparison of the intrinsic merits 
of this device. 

Since the DL algorithm is no more than a variant of the Lanczos one, it might be 
supposed to be of no further interest. This is not the case because it turns out that this 
variant is applicable to the generalised eigenproblem Ax = ABx in a much more 
straightforward way than the usual form of the Lanczos algorithm. In the following 
sections we describe the method together with that of Davidson and show how it can be 
applied to the generalised eigenproblem. Finally some numerical examples are given. 

2. Description of the Davidson and DL methods 

Let U, = (bl, b2, . . . , b,) be a set of p < n orthonormal vectors ( n  x 1) and let U be the 
p-dimensional subspace spanned by these vectors. The methods are based on restrict- 
ing the matrix A ( n  x n )  to the subspace U and diagonalising the matrix A, = U:AUp 
( p  x p )  by some standard method (Wilkinson 1965). If U is invariant under A then the 
eigenvalues of A, are equal to those of A and the corresponding eigenvectors are given 
by 

x k  = UpYk, 

where Y k  is the kth eigenvector of A,. 

eigenvector can be stated as follows. 
The DL algorithm for finding the kth eigenvalue ( k s p )  and the corresponding 

(a) Form A, = U,*AU, ( p  x p ) .  
(b) Solve the eigenproblem A,y = A y .  Select A k ,  y k .  

(C) Form 4, =AU,yk -hkUpYk. 
(d) Test for convergence (llqpll < E or l Y p k l <  E ) .  Stop if satisfied. 
(e) Orthogonalise 4, with respect to hi (i = 1, . . . , p ) .  dp+l = (I - U,U: )qP, bp+-l 

( f )  Form 
(g) Repeat from step (b) with matrix Ap+l of order p + 1 and U,+, = (U,, b,+~).  
Theoretically the vector 4, is orthogonal to the bi, i = 1, . . . , p ,  and only a normalis- 

ation is required, but rounding errors destroy the orthogonality so the orthogonalisa- 
tion process is necessary. The method allows the vectors bi, Abi to be kept in auxiliary 
store and to be transferred into the computer memory when needed. 

This algorithm is mathematically equivalent (Davidson 1975) to the Lanczos 
method, so the results should be the same as in Lanczos apart from rounding errors. In 
particular as in the usual Lanczos method (Kahan and Parlett 1976) the matrix 
AU, - U d ,  is null apart from its last column: 

= dp+l/lldp+lll. 
bfAb,+l for i = 1,. . . , p + 1. 

since by construction Abi ( i  = 1 , .  . . , p - 1) are linear combinations of the bi ( i  = 
1, . . . , p ) .  This result has been verified by numerous calculations. Thus the value of the 
last component of the vector Y k  can be used as a stopping criterion for the process since 
11411= llAx - Axll//lxll is unsatisfactory in the case with near degenerate eigenvalues. 
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In Davidson's method, step (c) of the algorithm is replaced by 

q i p  qip/(Ak -aii)* (2.2) 

This scheme accelerates the convergence rate considerably in the case of diagonally 
dominant matrices when a good approximation of the eigensolution sought is available. 
However, if we start with a bad subspace then the algorithm can break down 
(Kalamboukis 1979) since the new vector in the subspace may be almost parallel to the 
previous ones, causing extensive cancellation errors in the orthogonalisation process 
(step (d)). The vectors bi lose their orthogonality and reorthogonalisation is necessary; 
even then convergence is slow. Lanczos-type results as in (2.1) cannot be applied to 
Davidson's method, but our numerical examples (0 4) and other examples show that a 
test on the last component of the eigenvector Y k  still gives a good estimate for the 
accuracy of the calculated eigenvectors. 

3. Generalised eigenvalue problem 

Consider the problem of determining a partial eigensolution of the system Ax = ABx 
with A ,  B real symmetric large sparse matrices and B positive definite. The Lanczos 
method (Lanczos 1950) cannot be applied directly unless we factorise the matrix 
B = LL". In the following we propose a generalisation of the algorithms described in 
0 2 in which the matrices maintain their original form throughout the process. There is 
no need for the matrices to be declared explicitly; they can be represented in a matrix 
vector multiplication form in a subroutine. So we reduce the storage and the number of 
operations since the zeros do not appear in the multiplication. Also, it has been found in 
all the examples used that the vectors derived at each iteration step need not be 
orthogonalised as they had to be in the single eigenvalue problem. 

To find the kth eigenvalue (k d p )  one step of the algorithm can be summarised as 
follows: let U, = ( b l , .  . , , b,) be p orthonormal vectors ( n  x 1). 

(a) Form A, = U;AU,, B, = U;BUp. 
(b) Solve A,y = AB,y. Select hk, y k .  

(C) Form qp =A.U,yk -hkBUpYk. 
(d) Termination test (llqpII < E ) .  Stop if satisfied. 

(f)  Form bTAb,+*, b?Bb,+l for i = 1 , .  . . , p + 1. 
(8) Continue from step (b) with matrices Ap+l,  Bp+l of order p + 1 and U,+l = 

Theoretically the sequence of vectors bi must terminate after n steps, but our 
examples show that convergence has been achieved after only a few iterations have 
been performed. Also the vectors bi, Abi, Bbi have to be kept in auxiliary store for later 
use. If any of the matrices A, B is diagonally dominant we can use Davidson's 
perturbation term 

(e) b,+1 = s,/lls,ll. 

( u p ,  bp+1)* 

qip q i p / ( A k b i i  -aii) (3.1) 

instead of (c) to accelerate the convergence rate when a good approximation for the 
eigenvector is available. In this case orthogonalisation of the vectors bi is necessary. 
However, this change (3.1) may make the algorithm unstable since the matrix B, can 
lose the positive definite property in the course of computations. 
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4. Numerical results and discussions 

In this section we shall include a few examples that give us an idea of how the methods 
work in practice. The eigenvalues were found using the Jacobi method for the matrix 
A,  and the EA1 1AD subroutine from the Harwell library for the generalised problem 
(A,, Bp). 

Example 1. We constructed a matrix (100 x 100) with a cluster of eigenvalues at each 
end of the spectrum and one single eigenvalue in between. In order to examine the 
convergence rate of the algorithms described we vary the dominance d of the diagonal 
elements (d = maxi,/ I ai,/(aii - aij)l). The results are shown in tables 1 and 2. The values 
of (ypkl obtained from Davidson's method are compared with those obtained by 
applying one Lanczos step at the last iteration. 

Table 1. Davidson-Lanczos algorithm. 

d Iterations 11411 IYpkl 
~ ~ ~~~~~ 

1 *o 25 0.1 x 0.3 X 

0.1 25 0.5 X lo-' 0.5 X lo-' 
0.01 26 0.4 X lo-' 0.5 X 

0.001 36 0.3 x 0.3 x lo-' 
0~0001 17 0.2 x 10-~ 0.5 x io-' 
0~00001 8 0.1 x 10-~ 0.1 x 1 0 - ~  

Table 2. Davidson's algorithm ( 4 i p  4 i p / ( A k  - aii)) .  
~~ 

d Iteration 11411 Iypk l  (Davidson) l ypk l  (Lanczos) 

1.0 26 0.2 x io-' 0.4 x 0.1 x 

0.01 22 0.2 x 0.2 x 0.1 x 10-8 
0.001 9 0.1 x 0.1 x 0.5 x 1 0 - ~  
0~0001 5 0.3 x lo-'' 0.4 x io-' 0.1 x 10-'O 
0~00001 3 0.1 x 1 0 - ~  0.1 x io-' 0.1 x 10-'O 

0.1 24 0.3 x 0.7 x 0.1 x 

From table 2 we see that for small values of d (diagonally dominant matrix) a small 
value of 1 1 ~ 1 1  is reached before a small value of IYpkI. Since the accuracy of the 
eigenvectors depends on 

it appears that (ypkl gives a good indication of the accuracy of the calculated eigenvector 
i.e. that the factor mini+/ IAi -Ail has been effectively included by taking the step (2.2). 
This is emphasised by a comparison with table 1 showing the same matrix for the DL 
algorithm. 

Example 2. A Hamiltonian matrix for Ne i.e. two protons and two neutrons 
distributed in all allowed ways among the 24 single particle orbits of the nuclear sd-shell 

20 
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(640 distinguishable states). The interaction, defined by its matrix elements in the 
two-body system, is the empirically determined Chung-Wildenthal interaction (Kelvin 
et a1 1977) together with an empirical Coulomb interaction acting between the protons. 
The present method required 28 iterations to find the lowest eigenvalue with accuracy 
11q11= 0.5 x lo-' and the last component (y,kl equal to 0.6 x lo-'. The value of Iypkl, 
applying one step of Lanczos method at the end, was 0.2 x lo-*. Davidson's method 
converged after 31 iterations, with llqll= 0.3 x lo-', and lypkl for Lanczos equal to 
0.1 x lo-*. In figure 1 we give an illustration for the convergence rate of the algorithm 
for the low-lying states. Note that at the last iteration six of the eigenvalues of A, are 
very good approximations to those of A.  In concluding, these examples and other 
examples tested provide us with evidence that the present method is a stable and 
efficient one for the eigensolution of the problem Ax = Ax when a few of the extreme 
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Figure 1. Convergence diagram for the lowest-lying eigenvalues of *'Ne. The dots indicate 
the points at which eigenvalues have converged, to six significant digits. 

Number of iterations 

Figure 2. Convergence diagram for Ax = ABx with A, B random symmetric non-diagonally 
dominant matrices. Continuous lines represent Davidson's generalised algorithm and 
broken lines the DL algorithm. 
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Number of iterations 

Figure 3. As for figure 2, but for diagonally dominant matrices. 

eigenvalues are required, while for diagonally dominant matrices with d < 0.01 David- 
son’s method is faster. 

The examples tested for the generalised problem show the same behaviour of the 
algorithms as for the single case. Once again, investigation of the diagonal dominance 
shows that for d 4 0.01, for either of the matrices A, B Davidson’s generalised method 
is faster. In figures 2 and 3 we give an illustration of the methods by presenting both 
cases, for diagonally and non-diagonally dominant matrices. 

All of these results show clearly that no advantage is to be gained by the use of 
Davidson’s method unless there is a considerable degree of diagonal dominance. This is 
not usually the case in nuclear shell-model calcu1:itions. 
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